Exercise 3.3.3

For the following functions, sketch the Fourier sine series of $f(x)$. Also, roughly sketch the sum of a finite number of nonzero terms (at least the first two) of the Fourier sine series:
(a) $\quad f(x)=\cos \pi x / L$ [Use formula (3.3.13).]
(b) $f(x)= \begin{cases}1 & x<L / 2 \\ 0 & x>L / 2\end{cases}$
(c) $\quad f(x)=x$ [Use formula (3.3.12).]

Solution

Assume that $f(x)$ is a piecewise smooth function on the interval $0 \leq x \leq L$. The odd extension of $f(x)$ to the whole line with period $2 L$ is given by the Fourier sine series expansion,

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

at points where $f(x)$ is continuous and by the average of the left-hand and right-hand limits at points of discontinuity. The coefficients B_{n} are obtained by multiplying both sides by $\sin \frac{p \pi x}{L}$ (p being an integer), integrating both sides with respect to x from 0 to L, and taking advantage of the fact that sine functions are orthogonal with one another.

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Part (a)

For $f(x)=\cos \pi x / L$, the coefficients are

$$
\left.\begin{array}{rl}
B_{n} & =\frac{2}{L} \int_{0}^{L} \cos \frac{\pi x}{L} \sin \frac{n \pi x}{L} d x \\
& =\frac{2}{L} \int_{0}^{L} \frac{1}{2}\left[\sin \left(\frac{\pi x}{L}+\frac{n \pi x}{L}\right)-\sin \left(\frac{\pi x}{L}-\frac{n \pi x}{L}\right)\right] d x \\
& =\frac{1}{L}\left[\int_{0}^{L} \sin \frac{(1+n) \pi x}{L} d x-\int_{0}^{L} \sin \frac{(1-n) \pi x}{L} d x\right]=0 \quad \text { if } n=1 \\
& =\frac{1}{L}\left[\frac{\left[1+(-1)^{n}\right] L}{(1+n) \pi}-\frac{\left[1+(-1)^{n}\right] L}{(1-n) \pi}\right] \quad \text { if } n \neq 1
\end{array}\right] \begin{array}{ll}
0 & n=1 \\
& = \begin{cases}\frac{2\left[1+(-1)^{n}\right] n}{\left(n^{2}-1\right) \pi} & n \neq 1 \\
\frac{4 n}{} \quad n \text { odd }\end{cases} \\
& n \text { even }
\end{array}
$$

Below is a graph of the function and its odd extension to the whole line.

Below is a plot of the first ten terms in the infinite series:

$$
f(x) \approx \sum_{n=1}^{10} B_{n} \sin \frac{n \pi x}{L}
$$

Part (b)

For $f(x)=1$ if $x<L / 2$ and $f(x)=0$ if $x>L / 2$, the coefficients are

$$
B_{n}=\frac{2}{L}\left(\int_{0}^{L / 2} \sin \frac{n \pi x}{L} d x+\int_{L / 2}^{L} 0 \sin \frac{n \pi x}{L} d x\right)=\frac{4}{n \pi} \sin ^{2} \frac{n \pi}{4} .
$$

Below is a graph of the function and its odd extension to the whole line.

Below is a plot of the first ten terms in the infinite series:

$$
f(x) \approx \sum_{n=1}^{10} B_{n} \sin \frac{n \pi x}{L}
$$

Part (c)

For $f(x)=x$, the coefficients are

$$
B_{n}=\frac{2}{L} \int_{0}^{L} x \sin \frac{n \pi x}{L} d x=-\frac{2(-1)^{n} L}{n \pi} .
$$

Below is a graph of the function and its odd extension to the whole line.

Below is a plot of the first ten terms in the infinite series:

$$
f(x) \approx \sum_{n=1}^{10} B_{n} \sin \frac{n \pi x}{L} .
$$

